

DOE VTP Incubator Project (PI: Alex Jacobs; Project ID: ES244)

Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

Sila Nanotechnologies, Inc. (& Georgia Institute of Technology as a sub-contractor)

www.silanano.com

Intercalation vs. Non-intercalation Chemistries

Approach & Technology

- High Energy Li-ion Cell: core-shell silicon-based anode vs. core-shell metal fluoride (MF_x) cathode
- ✓ No direct electrolyte-active material interactions: Li ion permeable shell prevents unwanted side reactions
- ✓ Conductive composite core: transport of Li+ ions and electrons in both anode and cathode particles
- ✓ Minimal volume changes during cycling: pores in the core provide space for volume changes during Li insertion/
 extraction
- ✓ Tunable properties: precise control over particle size, conductivity and rate performance
- ✓ **High volumetric capacities**: up to 1200 mAh/cc on the electrode level
- ✓ "Drop-in" replacement: micron-size nanocomposite powder is easy to cast using industry-standard tools
- ✓ **High capacity loading**: interstitials between individual spherical particles allow for the fast ion transport in thick electrodes because compaction of spheres does not block the ion pathways.

Timeline & Budget

- ✓ Budget:
 - Gov't Share: \$1,000,000
 - Sila Share: \$250,000
- ✓ Timeline:
 - Start Date: October 1, 2014; End Date: September 31, 2016
 - Percent Complete: 25%

Cell-Level Goals

	U.S. DRIVE EV Cell-Level Goals	End of this Project Cell- Level Goals (2 years)	Follow-up Commercialization Effort Goals (4 years)
Discharge power density (W/I)	1500	2400	5400
Specific discharge power (W/kg)	700	1160	2800
Energy density @ C/3 discharge rate (Wh/I)	750	1200	1300
Specific energy @ C/3 discharge rate (Wh/kg)	350	580	650
Cycle life (cycles)	N/A	200	2000

Results & Discussion

GO / NO GO Milestone Description for Year 1	Meeting the Milestone	Results
Demonstrate Half Cells with 80% of the Theoretical Capacity	YES	82% Theoretical Capacity Demonstrated
Demonstrate Half Cells with 65% of the Theoretical Capacity on Cycle #1 with 65 Stable Cycles or more	YES	1000 Stable Cycles (~30% degradation)

 Good (for this chemistry) rate-performance at room temperature, suggesting the promise of our approach to overcome the commonly known challenges with MF_x chemistries – high electrical and high ionic resistance of fluorides

Collaborations with Other Institutions

- ✓ Georgia Institute of Technology (subcontractor):
 - Collaborator in powder synthesis
 - Collaborator in material characterization and postmortem analysis (TEM, EDS, XPS, SEM, etc.)
 - Collaborator in electrolyte work
- ✓ Army Research Laboratory:
 - Collaborator in Quantum Chemistry modeling
- ✓ Automotive Partner:
 - Collaborator in cell design and testing regimes

Future Activities

- ✓ Particle Synthesis:
 - Reduce the fraction of inactive (not MFx) components in the core-shell particles
 - Utilize combination of different MFx for synergetic performance improvements (rate, stability, energy, etc.)
- ✓ Cell-Related Work:
 - Further electrolyte optimization
 - Introduction of Li into the full cells with Li-free anodes
 - Full cell work with matching Si anode